Analysis of the Impact of Biomass Burning on Tropospheric O_3 Using Assimilated TES Observations and Complementary Satellite Data

Dylan Jones University of Toronto

Kevin Bowman, John Worden, Helen Worden, Greg Osterman, Susan Kulawik Jet Propulsion Laboratory California Institute of Technology

Jennifer Logan
Harvard University

Randall Martin
Dalhousie University

Analysis of the Impact of Biomass Burning on CO and O₃

Climatological emission inventory in the model underestimates the biomass burning

Objective: Assess whether the TES data have sufficient information to correct the underestimate in the model in a chemical data assimilation framework

Chemical Data Assimilation Methodology

Sub-optimal Kalman filter

$$\hat{\mathbf{x}}_k^a = \mathbf{x}_k^f + \mathbf{K}_k [\mathbf{y}^{\text{obs}} - \mathbf{H}_k \mathbf{x}_k^f]$$

Kalman Gain Matrix:
$$\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k)^{-1}$$

Analysis Error Cov. Matrix: $P_k^a = (I - K_k H_k) P_k^f$

(analysis error variance transported as a passive tracer)

Model and Data Streams

- GEOS-Chem model with full nonlinear tropospheric chemistry (4° x 5° resolution)
- CO profile retrievals from TES for Nov. 4-17 2004
- O₃ profile retrievals from TES for Nov. 4-17 2004
- NO₂ column retrievals from SCIAMACHY for Nov. 4-17, 2004
- 6-hour analysis cycle
- Assumed forecast error of 20% for CO, 50% for O₃, and 100% for NO₂
- Neglected horizontal correlations in forecast and observation error covariance matrices

Impact of Assimilation on CO and O₃

- Assimilation increases CO throughout the southern hemisphere
- Largest increases in O_3 (20-30%) are over the Indian Ocean and the Indonesian/Australian region

Influence of Assimilation of O₃ on NO_x

Modelled NO_x distribution produced with the assimilation of TES CO and O_3

Assimilation of O_3 significantly influences the NO_x distribution, because of the chemical coupling:

large decreases in NO_x (15-30%) over the Indian Ocean and the Indonesian/Australian region, where the O_3 increase is the greatest

Suggests that changes in O_3 in the assimilation can provide constraints in the chemical processes in the model

Assimilation of SCIAMACHY NO₂

Assimilated NO_x at 1 km at 09:00 GMT on Nov. 5th

Assimilation includes only NO₂ from SCIAMACHY

- Large local changes in NO_x due to the NO₂ assimilation
- Changes in O₃ are small, due to short lifetime of NO_x

Change in NO_x at 1 km 09:00 GMT (assim. - without assim.) Change in 24-hr ave. O₃ at 2 km (assim. - without assim.)

- Assimilation of NO₂ helps constrain the chemistry, but will require obs. with greater spatial and temporal coverage
- Updating the NOx emissions in the assimilation would be the most effective approach

Assimilation of O₃, CO, and NO₂

Absolute change in NO_x at 2 km on Nov. 14th

Change in assimilated O₃ at 2 km (NO₂ assim. - without NO₂ assim.)

Assimilation includes data from SCIAMACHY and TES

- In the southern hemisphere, largest changes in NO_x are typically over South America, Africa, and the Atlantic
- NO₂ assimilation produced small additional increases in O₃ (beyond increases produced by assimilation of the TES data)
- Largest NO_x-induced increases in O₃ are over South America, Africa, and the Atlantic, whereas the O₃ assimilation led to increases in O₃ mainly over the Indonesian region ⇒ SCIA NO₂ is providing limited but complementary information in the assimilation

Conclusions

- Assimilation of TES data reduced significantly the underestimate of CO and O₃ from biomass burning in the southern hemisphere in the model ⇒ TES CO and O₃ have sufficient information, when assimilated in a CTM, to dramatically improve the model simulation of CO and O₃
- Assimilation of O_3 observations results in a repartitioning of NO_y in the model, with large changes in the abundance of NO_x , reflecting the underlying chemical processes
 - \Rightarrow the assimilation of TES data, together with an adjoint of the CTM, will enable us to obtain a better understanding of the chemical processes controlling O_3
- Assimilation of NO_2 from SCIAMACHY provides constraints on NO_x , but its effect is limited because of the short lifetime of NO_x
 - → assimilation of observations with greater spatial and temporal coverage (such as NO₂ from OMI) would be helpful
 - > a 4Dvar dual state-source estimation approach will provide the best constraints on the chemistry